Química de la fibra de vidrio

Composición Molecular de la Fibra de Vidrio

Composición Molecular de la Fibra de Vidrio

La fibra de vidrio útil para tejido tiene como base el compuesto sílice, SiO2. En su forma pura el dióxido de silicio se comporta como polímero (SiO2)n. Es decir, no tiene un punto de fusión verdadero pero se suaviza a 1200 °C, punto en el que comienza a descomponerse y a 1713 °C la mayoría de las moléculas presentan libertad de movimiento. Si el vidrio ha sido extruido y enfriado de forma rápida desde esta temperatura, es imposible obtener una estructura ordenada.4 En su estado de polímero se forman grupos de SiO4que están configurados con estructura tetrahédrica con el átomo de silicio en el centro, y cuatro átomos de oxígeno en las puntas. Estos átomos luego forman una red de enlaces en las esquinas que comparten los átomos de oxígeno.

Los estados vítreos y cristalinos de la sílice (vidrio y cuarzo) tienen niveles energéticos similares en sus bases moleculares, lo que implica que en su forma vidriosa es extremadamente estable; en orden de reducir la cristalización, debe ser calentado a temperaturas superiores a los 1200 °C por períodos prolongados de tiempo.1

Aunque la sílice pura es perfectamente viable para hacer vidrio y fibra de vidrio, debe ser procesada a temperaturas muy altas, lo cual es un inconveniente a menos que sus propiedades químicas específicas sean necesarias. Parecería inusual introducir impurezas al vidrio, sin embargo añadir algunos materiales contribuye a bajar su temperatura de trabajo; estos materiales también añaden otras propiedades al vidrio que pueden ser benéficas en aplicaciones diferentes. El primer tipo de vidrio usado para hacer fibra fue el vidrio de cal sodada o el vidrio Clase A, que no es muy resistente a compuestos alcalinos; para corregir esto, un nuevo tipo conocido como Clase E, se desarrolló como un vidrio de alumino-borosilicato que es libre de elementos alcalinos (<2%);5 esta fue la primera formulación de vidrio usada para la formación de filamentos. El vidrio de clase E constituye aún la principal forma de producción de fibra de vidrio y sus compuestos particulares pueden tener ligeras variaciones que deben permanecer bajo cierto rango. La letra E es usada debido a que se desarrolló principalmente para aplicaciones eléctricas. El vidrio Clase S es una formulación cuya característica principal es la alta resistencia a la tracción y por lo mismo recibe su letra (de tensile strenght). El vidrio clase C fue desarrollado para resistir el ataque químico, principalmente de ácidos que destruirían un vidrio clase E (su letra proviene entonces de chemical resistance).5 El vidrio de Clase T, es una variante comercial de North American Fiberglass del vidrio de Clase C. El vidrio Clase A es una referencia industrial para denominar al vidrio reciclado, muchas veces de botellas, que se usa para hacer lana de vidrio. La clase AR es un vidrio resistente a compuestos alcalinos (AR de alkali-resistant). La mayoría de las fibras de vidrio tienen una solubilidad limitada en agua pero esto cambia en relación al pH. Los iones de cloruro también pueden atacar y disolver superficies de vidrio Clase E.

El vidrio de clase E no puede derretirse realmente, pero a cambio se suaviza, definiéndose su punto de ablandamiento como “la temperatura a la que una fibra con un diámetro entre 0.55 y 0.77mm de 235mm de longitud, se alarga con su propia carga a una rata de 1mm/min cuando está suspendida verticalmente y se ha calentado a una tasa de 5 °C por minuto”.6 El punto de deformación se alcanza cuando el vidrio tiene una viscosidad de 1014.5 poise. El punto de atenuación (enfriamiento), que es la temperatura en la que las tensiones internas se reducen a un límite comercialmente aceptable de 15 minutos, está determinado por una viscosidad de 1013 poise.6